
USE OF THE SEMIMOMENT METHOD TO SOLVE THE SHOCK LAYER RADIATIVE 

HEAT-TRANSFER PROBLEM 
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A method is proposed for calculating heat transfer by radiation in a viscous 
shock layer, based on the of the semimoment method and the method of quasi- 
linearization. 

An efficient method was proposed in [i] for solving the system of equations of motion 
of a selectively radiating gas in a shock layer, based on knowledge of the average absorption 
coefficients. However, the discontinuous nature of the average coefficient functions some- 
times leads to instability in the calculation, which somewhat reduces the practical value of 
the method. 

Below we describe an approach free from this defect. The method developed is based on 
the concept of eliminating calculations of selective radiative transfer from each cycle of 
the iteration process [i], and the use of the semimoment method [2] to solve the radiative 
transfer equation, and application of the quasilinearization method to calculate flow in the 
shock layer [3]. 

The choice of the semimoment method for integrating the transfer equation stems from its 
two under-mentioned properties which are important when one constructs a method for solving 
the total problem of flow of a radiating gas in a shock layer. The method is based on analyti- 
cal integration of the radiative transfer equation with respect to the angular coordinate, 
yielding a system of ordinary differential equations for functions dependent only on the space 
coordinate. In addition, it differs favorably from other methods using preliminary analyti- 
cal integration with respect to the angular coordinate (e.g., the method of moments) in that 
the semimoment functions of the radiative intensity are of constant sign and are finite. 

The problem is formulated in full accord with [i], and therefore there is no need here 
to give the original system of equations describing flow of the gas in the hlgh-temperature 
shock layer, nor to discuss the assumptions used. 

According to the method of solution adopted, calculation of the spectral radiative 
intensity field J% from the equation 
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is replaced by defining the functions M~,~ (n = 0.i) satisfying the system of differential 
equations 

.... + = ( - -  M$,~ + + 

+ = M+~ aJb,~), Ml,~,u k~ (-- + 2 

ML~,u = 6 k~ ( M ~  + MF,~ -- aJb,~), 

(2) 

MF,~,u = k~ (--M-s § 2 ~&.O. 

The relation between the semimoment characteristics M -+ and the spectral radiative 
i n t e n s i t y  i s  t he  f o l l o w i n g :  
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Fig. i. The integral radiative energy flux to the washed sur- 
face qR for R = 0.1 m and p = i0 s N/m 2 as a function of the stag- 
nation temperature To: i) this paper; 2) [i]; 3) [4]. The units 
of qR are MW/m 2 and of To ~ 

Fig. 2. The convective heat flux to the washed surface qe as a 
function of the stagnation enthalpy H: I) this paper; 2) [i]; 3) 
[5]; 4) [4]. The units of qe/Rp ~i are MW/ma'S.bar ~ and the 
units of H are MJ/kg. 

The boundary conditions for the radiative intensity at the body surface and at the shock 
front are modified to account for Eq. (3). 

In solving the problem of gas motion in a high-temperature shock layer it is very ef- 
ficient to calculate the temperature and the radiative function fields, not in succession as 
was done in [I] by the discrete ordinate method, but in parallel, i.e., the equations of motion 
and energy conservation are solved simultaneously with the radiative transfer equation by the 
quasilinearization method [3]. This can be done if one divides the process Of seeking a solu- 
tion into two stages. In the first stage the system of equations (2) is solved in the selec- 
tive formulation, and the effective integral absorption coefficients 

•  = o . ( 4 )  

,7 m + :' 

0 0 

are i n t r o d u c e d ,  w h e r e  M + are the integral moment characteristics, defined according to 
n 

M~ = S M~,x d)~. (6) 
0 

We note that • is the Planck mean absorption coefficient. 

In the second stage we directly seek a solution of the system of gasdynamic equations 
and the system of moment equations, but the latter is already used in a certain "gray-gas" 
formulation obtained with the help of Eqs. (4) and (5)1 

+ + + 
M 0 , u = 6 ( - - ~ o M 0  + + 

+ + 
M+,u = - -  Mo Uo -}- 2•  4, (7) 

M-o-o,u = 6 (z?M-6- q- •  ~po'T4), Ml ,  y = - -  Mo •  upoT 4. 
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Fig. 3. Distribution of the temperature 
T = t.10 ~ (curves 1, 2, and 3) and of the 
effective absorption coefficients in the 
compressed layer region: the first number 
corresponds to the temperature profile for 
which the effective integral coefficients 
were computed, while the second number is 
1 for x + and 2 for • The units of T are 
o w ~ + 

K, and the unlts of • are 1/cm. 

One should note the following two circumstances which are evidence that the use here of 
the semimoment method is well founded: 

i) It follows from the definition of the semimoment radiative characteristics given by 
Eq. (3) that the effective absorption coefficients introduced according to Eqs. (4) and (5) 
are constant in sign and finite, while the functions of the mean absorption coefficients deter- 
mined in [i] by the method of discrete ordinates have points of discontinuity of the second 
kind; 

2) To solve the selective part of the problem, one can use the solution of system (2) in 
integral form, which eliminates the question of possible direct integration of this system in 
the same frequency ranges where the optical thicknesses of the layer are large enough. 

It should also be stressed that, as in [i], by using this approach to solve the problem 
one can avoid seeking a solution of the selective problem from a large number of iterations. 

By way of an example of the use of this method, we computed the flow of radiating air in 
the shock layer near the stagnation llne for conditions analogous to those in [1]. We used 
exactly the same thermodynamic properties of air, viscosity coefficients, Prandtl numbers, 
and spectral absorption coefficients of air. The only difference from [I] was that the air 
absorption coefficient was approximated by a piecewise-constant function in eight sections: 

= 0.02 -- 0.1 -- 0.11 -- 0.125 -- 0.22 -- 0.335 -- 0.57 -- 1.35 -- 4 um. 

Figures 1 and 2 show the results of calcuiations of the radiative and convective fluxes 
evaluated in this paper and also by other authors. Figure 3 shows profiles of the effective 
absorption coefficients and the corresponding temperature distribution through the shock 
layer. The broken lines in Fig. 3 show qualitatively the profiles of mean absorption coef- 
ficients introduced in [i]. 

One should note as an overall characteristic of this method of solving the problem that 
the program written for the computation on the BESM-6 computer (in Fortran language) showed 
adequately high operational qualities -- fast convergence of the iterative process (3-7 itera- 
tions), and acceptable speed (-5 min). 
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NOTATION 

Ik, Je,k, spectral radiative intensity of the medium and of a perfect blackbody; ~ = 
cos 8; 8, angle between the direction of the y axis, normal to the surface, and the ambient 
direction of propagation of the radiation; kk, volume spectral absorption coefficient; ( )y, 
differentiation with respect to y; T, gas temperature; s, Stefan--Boltzmann constant; ~, wave- 
length of the radiation; R, radius of blunting of the body; p, pressure in the shock layer; 
H, stagnation enthalpy; qR' integral radiative heat flux to the surface; qc, convective heat 
flux; h, shock layer thickness. 
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SPATIAL NONSTATIONARY HEAT-CONDUCTION PROBLEM FOR A PRISM WITH 

A COORDINATE-DEPENDENT HEAT-TRAnSFER COEFFICIENT 

Yu. M. Kolyano and E. G. Grits'ko UDC 536.12-539.376 

We present an efficient method for the determination of three-dimensional non- 
steady-state fields of bodies of simple shapes, when the heat-transfer coefficient 
from their surface changes locally. 

We consider an isotropic semiinfinite rectangular prism 0 ~ z _-~/_~, 0 ~-~x ~xo, 0 ~-~ y_ 
yo. Through the face z = 0 of the prism, convective heat exchange takes place with the in- 
homogeneous external medium. The temperature of the external medium, in contact with an 
arbitrary region F of the z = 0 surface is equal to tm:. The remaining part of the surface 
z = 0 is in contact with an external medium of temperature t m. The heat-transfer coefficient 
in the region F is denoted by 5,, and from the surface z = 0 outside F by 5, with ~i > 5. The 
surfaces x = 0, x = xo, y = 0, y -- yo are either thermally insulated or are kept at tempera- 
ture t m. In dimensionless variables, the boundary-value problem for the determination of the 
non-steady-state temperature field in the semiinfinite rectangular prism can be written as 
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